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Abstract  
We consider the following problem: For a system consisting of two submodules, the behavior 
of one submodule is known as well as the desired behavior S of the global system. What 
should be the behavior of the second submodule such that the behavior of the composition of 
the two submodules conforms to S ? -  Solutions to this problem have been described in the 
context of various specification formalisms and various conformance relations.  Here we 
present a generalization of this problem and its solution in the context of relational databases, 
and show that this general solution can be used to derive several of the known algorithms that 
solve the problem in the context of regular behavior specifications based on finite state 
automata with synchronous communication or interleaving semantics. The paper also 
provides a new solution formula for the case that the module behaviors are specified in a 
hypothesis-guarantee paradigm distinguishing between input and output. A new submodule 
construction algorithm for synchronous, partially defined input/output automata is also given. 

1. Introduction  
In automata theory, the notion of constructing a product machine S from two given finite 
state machines S1 and S2, written S = S1 x S2, is a well-known concept. This notion is very 
important in practice since complex systems are usually constructed as a composition of 
smaller subsystems, and the behavior of the overall system is in many cases equal to the 
composition obtained by calculating the product of the behaviors of the two subsystems. 
Here we consider the inverse operation, also called equation solving: Given the composed 
system S and one of the components S1, what should be the behavior S2 of the second 
component such that the composition of these two components will exhibit a behavior equal 
to S. That is, we are looking for the value of X which is the solution to the equation S1 x  X  
= S. In fact, we are looking for the most general machine X which composed with S1 
satisfies some conformance relation in respect to S. In the simplest case, this conformance 
relation is trace inclusion. 

A first paper of 1980 [Boch 80d] (see also [Merl 83]) gives a solution to this problem for the 
case where the machine behavior is described in terms of labeled transition systems (LTS) 
which communicate with one another by synchronous interactions  (see also [Hagh 99] for a 
more formal treatment).  This work was later extended to the cases where the behavior of the 
machines is described in CCS or CSP (with behavioral equivalence as conformance relation) 
[Parr 89], by finite state machines (FSM) communicating through message queues [Petr 98, 
Yevt 01a], by input/output automata [Dris 99] ([Qin 91] considers bisimulation as 
conformance relation), and by synchronous finite state machines [Kim 97]. A restricted 
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version of this problem is considered in an earlier paper [Kim 72] which considers series 
composition of FSMs where each message goes from the originating FSM to its neighbor on 
the right (no feedback). The specification of the rightmost FSM is derived from the behavior 
of the other FSMs and the desired behavior of the composition.  

For a discussion of the applications of this equation-solving method in communication 
protocol design and control theory, we refer the reader to [Boch 02a]. 

In this paper we show that the above equation solving problem in the different contexts of 
LTS, synchronous and asynchronous FSMs and IOA are all special cases of a more general 
problem which can be formulated in the context of relational database theory which is 
generalized to allow for non-finite relations (i.e. relations representing infinite sets). We give 
the solution of this general problem and give a proof of its correctness. We also show how 
the different specialized version of this problem - and the corresponding solutions - can be 
derived from the general database version. 

After a review of basic notions of relational databases, we present in Section 3 the problem 
of equation solving in the database context and provide solution formulas and their proofs. In 
Section 4, we discuss how the database model can be adapted to model the dynamic behavior 
of systems and their components based on trace semantics, that is, when the behavior of a 
system component is characterized by the set of possible traces of interactions in which it 
could participate. We consider the cases of synchronous rendezvous communication and 
interleaving semantics. We also explain how the solution formula for databases can be used 
to derive solution algorithms for systems with regular behavior (i.e. described by finite state 
transition systems). In Section 5 we introduce the distinction of input and output which 
allows the specification of a component behavior using the hypothesis-guarantee paradigm. 
We state appropriate conformance relations which can be used to define the submodule 
construction problem. We present a general solution formula which leads to several 
submodule construction algorithms that can be applied to different variants of  regular 
behavior specifications, including a variant allowing for nondeterministic output and partially 
defined behaviors. 

 

2. Review of some notions from the theory of relational databases  

The following concepts are defined in the context of the theory of relational databases [Maie 
83]. Informally, a relational database is a collection of relations where each relation is usually 
represented as a table with a certain number of columns. Each column corresponds to an 
attribute of the relation and each row of the table is called a tuplet. Each tuplet defines a 
value for each attribute of the relation. Such a tuplet represents usually an “object”, for 
instance, if the attributes of the employee relation are name, city, age, then the tuplet <Alice, 
Ottawa, 25> represents the employee “Alice” from “Ottawa” who is 25 years old. 

The same attribute may be part of several relations. Therefore we start out with the definition 
of all attributes that are of relevance to the system we want to describe. 

Definition (attributes and their values): The set A = {a1, a2, …, am} is the set of attributes. 
To each attribute ai is associated a (possibly infinite) set Di  of possible values that this 
attribute may take. Di  is called the domain of the attribute  ai . We define D = U Di to be the 
discriminate union of the Di .  
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Definition (relation): Given a subset  Ar of  A, a relation R over Ar, written R[Ar], is a 
(possibly infinite) set of mappings T: Ar --> D  with T(ai) ε Di. An integrity constraint is a 
predicate on such mappings. If the relation R has an integrity constraint C, this means that for 
each T ε R,  C(T) is true. 

Note: In the informal model where a relation is represented by a table, a mapping T 
corresponds to a tuplet in the table. Here we consider relations that may include an infinite 
number of different mappings. 
Definition (projection): Given R[Ar] and Ax  ⊆ Ar , the projection of R[Ar] onto Ax , written 
projAx (R), is a relation over Ax with  

T ε projAx (R)  iff  there exists T’ ε R such that for all ai ε Ax , T(ai) = T’(ai) 

We note that T is the restriction of T’ to the subdomain Ax . We also write T = projAx (T’). 

Definition (natural join): Given R1[A1] and R2[A2], we define the (natural) join of the 
relations R1 and R2 to be a relation over A1 U A2 , written  R1 join R2 , with 

 T ε (R1 join R2)  iff  projA1 (T) ε R1 and projA2 (T) ε R2 

Definition (chaos): Given Ar ⊆ A, we call chaos over Ar , written Ch[Ar] , the relation which 
includes all elements T of Ar --> D  with T(ai) ε Di , that is, the union of all relations over Ar. 

Note: We note that  Ch[Ar] is the Cartesian product of the domains of all the attributes in Ar . 
The notion of “chaos” is not common in database theory. It was introduced by Hoare [Hoar 
85] to denote the most general possible behavior of a module. It was also used in several 
papers on submodule construction [Petr 98, Dris 99b]. 

It is important to note that we consider here infinite attribute value domains and relations that 
contain an infinite number of mappings (tuplets). In the context of traditional database 
theory, these sets are usually finite (although some results on infinite databases can be found 
in [Abit 95]). This does not change the form of our definitions, however. If one wants to 
define algorithms for solving equations involving such infinite relations, one has to worry 
about the question of what kind of finite representations should be adopted to represent these 
relations. The choice of such representations will determine the available algorithms and at 
the same time introduce restrictions on the generality of these algorithms. Some of these 
representation choices are considered in Sections 4 and 5. 

3. Equation solving in the context of relational databases 
We consider here a very simple configuration with three attributes a1, a2, and a3, and three 
relations R1[{a2, a3}], R2[{a1, a3}],   and R3[{a2, a1}] as shown in the figure below.  A more 
general architecture has been considered in [Boch 02a]. 

            

 

 
Figure 3.1: Configuration of 3 relations sharing 3 attributes 
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We consider the following equation (which is in fact an inclusion relation)  

 proj {a2, a1} (R1 join R2 )  ⊆ R3                                                  (Equ. 1) 

If the relations R1 and R3 are given, we can ask the question: for what relation R2 will the 
above equation be true. Clearly, the empty relation, R2 = Φ (empty set), satisfies this 
equation. However, this case is not very interesting. However, we note that there is always a 
single maximal solution. This solution is the set  

Sol(2) = {T ε Ch[{a1, a3}] | proj {a2, a1} (R1 join {T} )  ⊆ R3 }       (Equ. 2) 

This is true because the operators of set union and intersection obey the distributive law in 
respect to the join operation, that is, Ri join (Rj union Rk) =   ( Ri join Rj)  union  ( Ri join Rk); 
and similarly for intersection. 

While the above characterization of the solution is trivial, the following formula is useful for 
deriving algorithms that obtain the solution in the context of the specific representations 
discussed in Sections 4 and 5. 

Theorem: A solution for R2 that satisfies Equation (1), given R1 and R3 , is given by 
the following formula (where “/” denotes set substraction): 

Sol(3) = Ch[{a1, a3}] / proj{a1, a3} ( R1 join ( Ch[{a1, a2}] / R3 ) )       (Equ. 3) 

This is the largest solution and all other solutions of Equ. (1) are included in this one. 

Informally, Equation (3) means that the largest solution consists of all tuplets over {a1, a3} 
that cannot be obtained from a projection of a tuplet T [{a1, a2, a3}] that can be obtained by a 
join from an element of R1 and a tuplet from Ch[{a1, a2}] that is not in R3. 

We note that the smaller solution 

   Sol(3*) =  proj{a1, a3} ( R1 join R3) / proj{a1, a3} ( R1 join ( Ch[{a1, a2}] / R3 ) )  (Equ. 3*) 

is also an interesting one, because it contains exactly those tuplets of Sol(3) that can be joint 
with some tuplet of R1 to result in a tuplet whose projection on {a1, a2} is in R3 . Therefore 
(R1 join Sol(3)) and (R1 join Sol(3*)) are the same set of tuplets; that means the same subset of 
R3 is obtained by these two solutions. In this sense, these solutions are equivalent. We note 
that the solution formula given in [Merl 83] corresponds to the solution Sol(3*). 

Proof of the theorem:  First we note that (T2 ε Sol(3) ) is equivalent to the statement that 
there exist no T ε Ch [{a1, a2, a3}] such that                                   (Equivalence 4)                                           

     proj{a1, a3}(T) = T2 and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3     

We have to prove that Sol(3) = Sol(2) . In order to show that Sol(3) ⊆ Sol(2), we show that 

 proj {a2, a1} (R1 join Sol(3) )  ⊆ R3                                                      (Equ. 5) 
Taking any T’ ε (R1 join Sol(3)), we have proj{a2, a3}(T’) ε R1 and proj{a1, a3}(T’) ε Sol(3) . Since 
proj{a1, a3}(T’) ε Sol(3) ,  there is, according to Equivalence (4), no T ε Ch [{a1, a2, a3}] such 
that proj{a1, a3}(T) = proj{a1, a3}(T’)  and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3  . Since T’ 
satisfies the first two of these three conditions, we conclude that the last condition must be 
false for T’. Therefore we have that proj{a1, a2}(T’) ε R3  which implies Equation (5).  
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In order to prove that Sol(3) ⊇  Sol(2) , we assume that this is not true and that there exist a 
tuplet T’ that is in Sol(2) , but not in Sol(3) . However, the latter implies, according to 
Equivalence (4), that there exists a T ε Ch [{a1, a2, a3}] such that  

     proj{a1, a3}(T) = T’ and T1 =def proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3     (Equ. 6) 

Considering the definition of the join operation, we conclude that {T} = {T’} join {T1} since 
the join of two singleton relations contains at most one tuplet. But now we have a 
contradiction because ( T’ ε Sol(2) ) implies proj{a1, a2} ({T’} join {T1}) ⊆ R3 while Equation 
(6) states  proj{a1, a2} ({T’} join {T1})  ¬ε R3  . Therefore our assumption must be false.  
Q.E.D.  

4. Equation solving in the context of composition of sequential machines or reactive 
software components 

4.1. Modeling system components and behavior using traces 
Sequential machines and reactive software components are often represented as black boxes 
with ports. The ports are the places where the interactions between the component in 
question and the components in its environment take place.  

For allowing the different modules to communicate with one another, their ports must be 
interconnected. Such interconnection points are usually called interfaces. An example of a 
composition of three modules (sequential machines or reactive software components) is 
shown in Figure 4.1. Their ports are pair-wise interconnected at three interfaces a1, a2, and a3.  

 

 

 

 

 

Figure 4.1 : Configuration of 3 components interconnected through 3 interfaces 
The dynamic behavior of a module (sequential machine or a reactive software component) is 
usually described in terms of traces, that is, sequences of interactions that take place at the 
interfaces to which the module is connected. Given an interconnection structure of several 
modules and interfaces, we define for each interface i the set of possible interactions Ii that 
may occur at that interface. For each (finite) system execution trace, the sequence of 
interactions observed at the interface ai is therefore an element of  Ii * ( a finite sequence of 
elements in Ii ).  

For communication between several modules, we consider in this paper rendezvous 
interactions. This means that, for an interaction to occur at an interface, it is necessary that all 
modules connected to that interface must make a state transition compatible with that 
interaction at that interface. 

In our basic communication model we assume that the interactions between the different 
modules within the system are synchronized by a clock, and that there must be an interaction 
at each interface during each clock period. We call this “synchronous operation”.  
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4.2. Correspondence with the relational database model 
We note that the above model of communicating system components can be described in the 
formalism of (infinite) relational databases as follows: 

(1) A port corresponds to an attribute and a module to a relation. For instance, the 
interconnection structure of Figure 4.1 corresponds to the relationship shown in 
Figure 3.1. The interfaces a1, a2, and a3 in Figure 4.1 correspond to the three attributes 
a1, a2, and a3  in Figure 3.1, and the three modules correspond to the three relations. 

(2) If a given port (or interface) corresponds to a particular attribute ai, then the possible 
execution sequences Ii* occurring at that port correspond to the possible values of that 
interface, i.e. Di = Ii* . 

(3) The behavior of a module Mx is given by the tuplets Tx contained in the 
corresponding relation Rx [Ax], where Ax corresponds to the set of ports of Mx. That 
is, a trace tx of the module X corresponds to a tuplet Tx which assigns to each 
interface ai the sequence of interactions sxi observed at that interface during the 
execution of this trace. We write  sxi @t to denote the t-th element of sxi 

Since we assume “synchronous operation” (as defined in Section 4.1), all tuplets in a relation 
describing the behavior of a module must satisfy the following constraint: 

Synchrony constraint: The length of all attribute values are equal. (This is the length of 
the trace described by this tuplet.) 

 

4.3. The case of synchronous finite state machines 
If we restrict ourselves to the case of regular behavior specifications, where the (infinite) set 
of traces of a module can be described by a finite state transition model, we can use Equation 
(3) or Equation (3*) to derive an algorithm for equation solving.  In this case, the behavior 
specification for a module is given in the form of a finite state automaton (similar to labeled 
transition systems) where each transition is labeled by a set of interactions, one for each port 
of the module. We note that the synchronous composition considered here is different than 
the synchronous composition of Mealy or Moore machines, as considered in [Kim 97] since 
the latter distinguish between input and output, as discussed in Section 5. (It appears that the 
complete version of [Yevt 01a] also deals with this synchronous case). 

The algorithm for equation solving is obtained from Equation (3) or Equation (3*) by 
replacing the relational database operators projection, join and substraction by the 
corresponding operations on finite state automata. The database projection corresponds to 
eliminating those interaction labels from all transitions of the automaton which correspond to 
attributes that are not included in the set of ports onto which the projection is done. This 
operation, in general, introduces nondeterminism in the resulting automaton. The 
substraction operation is of linear complexity if its two arguments are deterministic finite 
state automata. Since the projection operator introduces nondeterminism, one has to include a 
step to transform the nondeterministic automata obtained from the projection  into its 
equivalent deterministic form. This step is in general of exponential complexity. However, 
our experience with some examples involving the interleaved semantics described below 
[Dris 99a] indicates that reasonably complex systems can be handled in many cases. The 
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well-known algorithm for performing this step consists of building a deterministic automata 
which has as its states the possible subsets of states (of the original automaton) that are 
reachable after a given trace of interactions.  

In fact, the substraction operations involved in Equation (3) are of a special form; they 
represent the construction of the complement. This is a simple operation for a deterministic 
automaton. In a first step, the automaton is completed, that is, an additional (non-accepting) 
state, called fail state, is introduced, and from each state of the automaton additional 
transitions are created from the state to the fail state for all those interaction labels for which 
the original automaton has no transition from that state. There is also a self-loop on the fail 
state for all possible interaction labels. This first step does not change the traces of 
interactions accepted by the automaton. The second step performs the complement by 
exchanging the accepting and non-accepting states. 

The join operation corresponds to the composition operator of automata which is of 
polynomial complexity. In the case of the synchronous operation considered here, the 
composition is defined as follows. 

Synchronous composition: Given two automata R1 [a1, a3] and R2 [a2, a3] with sets of 
states S1 and S2, respectively, and transitions written si – x, y --> si’ with si and  si’  ε Si, for i 
= 1, 2, and where x and y are interactions at the two ports of the automaton in question. The 
synchronous composition of these two automaton is an automaton R [a1, a2, a3] which is 
defined as follows:  

(a) The states of R are of the form (s1, s2) where s1 ε S1 and  s2 ε S2; the initial state is the 
pair of the initial states of the R1 and R2, and a state (s1, s2) is accepting if s1and s2 
are accepting in their respective automata. 

(b) R3 includes a transition  (s1, s2) – x, y, z --> (s1’, s2’) iff  the transitions   
s1 – x, z --> s1’    and    s2 – y, z --> s2’ exist in their respective automata. 

The composition of two automata can be easily constructed by starting from the initial state 
and constructing all states of the composition that are reachable.   

Figure 4.2 shows a simple example. R3 and R1 are given. The note “Notation (x1,x2)” for R3  
means that the transition labels of R3 first contain the interaction at interface a1 and then at a2. 
The submodule construction algorithm proceeds as follows: First R3 is completed with the 
introduction of a fail state, then the product with R1 is constructed. When the interations at 
the interface a2 are projected out, there is nondeterminism in state (2,2) for the label (n,n,d). 
This leads to a determinized automaton. From this automaton, all traces leading to a state 
containing fail should be eliminated. This leads to the elimination of the transition (n,n) from 
state ((4,3), (5,3)), but then also the transition leading to this state is eliminated since this 
state represents a deadlock. (Deadlock elimination is not further considered here).   

4.4. The case of interleaving rendezvous communication 
In this subsection, we consider non-synchronous rendezvous communication also called 
interleaving semantics, were at each instant in time at most one interaction takes place within 
all interconnected system components. This communication paradigm is used, for instance,  
with labeled transition systems (LTS), CSP and LOTOS. One way to model the behavior of 
such systems is to consider a global execution trace which is the sequence of interactions in 
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the order in which they take place at the different interfaces (one interface at a time). Each 
element of such an execution sequence defines the interface ai at which the interaction occurs 
and the interaction vi which occurs at that interface.  

 

Figure 4.2: Example of submodule construction for synchronous automata 
Another way to represent the behavior of such systems is to reduce it to the case of 
synchronous communication as follows. This is the approach which we adopt in this paper 
because it shows how the interleaving rendezvous communication can be based on our 
relational database model. In order to model the interleaving semantics, we postulate that all 
sets Ii include a dummy interaction, called null. It represents the fact that no interaction takes 
place at the interface. We then postulate that each tuplet T of a relation R[A] satisfies the 
following constraint: 

Interleaving constraint: For all time instants t (t > 0) we have that T(ai)[t] ≠ null 
implies T(aj)[t] = null for all aj  ε A (j ≠ i) 
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We note that tuplets that are equal to one another except for the insertion of time periods 
during which all interfaces have the null interaction are equivalent as far as the sequence of 
non-null interactions is concerned. Note that this equivalence is sometimes called stuttering 
equivalence. In the following we are only interested in equivalent classes in respect to this 
stuttering equivalence. Such a class may be represented by the interaction sequence in the 
class that has no time instance with null interactions at all interfaces. We say that such an 
interaction sequence is of “normal form”. We also assume that each relation contains, with 
each sequence of interactions, also all other sequences that are stuttering equivalent to it. We 
call this the stuttering completeness assumption.  

The relational database operators projection and substraction apply under the interleaving 
constraint in the normal way. However, the result obtained by the joining of two relations 
satisfying the interleaving constraint may include tuplets that do not satisfy this constraint, 
because the joint interaction sequences may have non-null interactions at the same time at 
different interfaces. We assume that such sequences not satisfying the interleaving constraint 
will be eliminated from the original result of the join. However, because of the stuttering 
completeness assumption, there will also be an interaction sequence in the original join 
results which contains the conflicting interactions at different time instants. Therefore the 
result of a join will include all the interleavings of the non-null interactions as far as they are 
conform with each of the joint relations. We can therefore conclude that the interleaving 
semantics defined here corresponds exactly to the well-known interleaving semantics of 
labeled transition systems. 

 

4.5. The case of finite labeled transition systems  
To simplify the notation, we assume that the sets of interactions at different interfaces are 
disjoint (i.e. Ii intersection Ij = empty for ai ≠ aj), and we introduce the overall set of 
interactions I = U(ai  ε A) Ii. Then a class of stuttering equivalent interleaving traces (as 
described in Section 4.4) corresponds one-to-one to a sequence of interactions in I. 

If we restrict ourselves to the case where the possible traces of a module are described by a 
finite LTS, the resulting set of possible execution sequences are regular sets. In fact, a finite 
LTS is a finite state automaton with only accepting states. Therefore the operations 
projection, and substraction over interleaving traces can be represented by finite operations 
over the corresponding automata representations, as in the case of synchronous operation 
discussed in Section 4.4. Again, the projection may introduce nondeterminism (in the form of 
spontaneous transitions, sometimes written with label i) and a determination step is required 
before the substraction operation. Finally, the join operation represents the composition of 
LTSs and is defined as follows: 

Interleaved composition: Given two automata R1 [a1, a3] and R2 [a2, a3] with sets of states 
S1 and S2, respectively, and transitions written si – x --> si’ with si and  si’  ε Si, for i = 1, 2, 
and where x is an interaction at one of the two ports of the automaton in question. The 
interleaved composition of these two automaton is an automaton R [a1, a2, a3] which is 
defined as follows:  

(a) The states of R are of the form (s1, s2) as for synchronous composition. 
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(b) R3 includes a transition  (s1, s2) – x --> (s1’, s2’) iff one of the following conditions is 
satisfied: 

• x  ε I1 and  s1 – x --> s1’ and  s2 =  s2’ 

• x  ε I2 and  s2 – x --> s2’ and  s1 =  s1’ 

• x  ε I3 and  s1 – x --> s1’ and  s2 – x --> s2’  

The submodule construction algorithm defined by Equation (3*) based on the operations on 
automata described above is equal to the construction algorithm that we described earlier 
[Boch 80d, Merl 83]. The proof of correctness of Equation (3) given in Section 3 also 
provides a proof of this algorithm. 

The example of Figure 4.2 may be considered as an example for interleaving semantics. In 
fact, the specification has the particular form that, if we consider the interaction written “n” 
as the null interaction, then all the specifications in the figure satisfy the interleaving 
constraint. 

 

5. Distinction of input and output 

5.1. Module specification based on hypothesis and guarantees 
The rendezvous communication paradigm considered in Section 4 has a drawback when it 
comes to its use for requirements specification. Usually, the requirements for a system 
module has two parts: (a) the hypothesis that the module may make about the behavior of the 
other modules within its environment and general operating assumptions such as temperature 
ranges etc., and (b) the guarantees that the module must provide concerning the behavior it 
will exhibit during execution. 

The distinction between these two aspects cannot be made clearly with the rendezvous 
communication paradigm because for any interaction to occur, it is necessary that all 
participating modules are ready for it. There is no notion that one of the modules is 
particularly responsible for initiating the interaction.  

We consider in the following a communication paradigm where, for each interaction taking 
place at some interface, there is one participating module for which the interaction is output, 
and it is input for all other modules that are connected to that interface. Whether the 
interaction will take place or not, and what its parameters will be, will solely be determined 
by the outputting module (the interaction must satisfy the guarantees provided by this 
module). The other participating modules for which the interaction is input do not influence 
the occurrence of the interaction and the values of its parameters. However, they may make 
the hypothesis that the outputting modules will satisfy the guarantees defined by their 
respective specifications, thus limiting the range of possibilities for receiving the interaction 
in question. 

This paradigm is the basis for the semantics of (input-output) finite state machines, 
Input/Output Automata (IOA) [Lync 89], as well as many software specification formalisms, 
such as [Adab 95, Misr 81]. It seems that this paradigm also subsumes the paradigm of 
controllable and uncontrollable interactions as considered for discrete event control design 
[Rama 89]. We note that in the case of finite state machines and IOA, we consider partially 
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defined machines; the hypothesis is made that only those inputs will occur for which a 
transition is defined. 

We can introduce the distinction between input and output in our general relational database 
formalism as follows: Each attribute of a relation is marked as either input or output. An 
attribute of a relation resulting from a join operation is marked input if the same attribute is 
marked as input in the two operands of the join operation, otherwise it is marked output. A 
join operation is said to have output conflict if there is an attribute that is marked output for 
both operands. We consider in the following only join operations without output conflict. 

We now introduce the following notations. Given a relation R[AR] and a tuplet T ε R, we 
write T|t for the tuplet which has as values for an attribute ai ε AR the prefix (of length t) of 
the value which T has for this attribute. For example, if T = <abc, def> then T|2 = <ab, de>. 
And we write T@t for the tuplet which has as value for an attribute ai ε AR the t-th elemenbt 
of the sequence which is the value of T for this attribute.For the example of T above, we have 
T@1 = <a, d> and  T@3 = <c, f>. Similarly, we write T@t(ai) to denote the t-th element of 
T(ai). 

In order to clearly distinguish between the input and output attributes of a relation R, we 
write R[AR

I | AR
O] where ai ε AR

I are the input attributes of R and ai ε AR
O the attributes 

marked output. 

 

5.2. Conformance relations 
In trace semantics without the distinction of input and output, as discussed in Section 4, the 
conformance relations are very simple and can be summarized by the following definitions: 

(a) Valid trace: A tuplet (trace) T is valid in respect to a relation (specification) R if T ε 
R. 

(b) Trace inclusion: An specification R’ conforms to a specification R iff all the traces of 
R’  are also valid in respect to R. 

In order to define meaningful relations in the context of synchronous operation, we assume 
that a specification satisfies the constraint that the output allowed at time t by the 
specification does not depend on the input received at time t (but only on previous inputs and 
outputs). This implies that a delay of at least one time unit exists between a received input 
and the output which is caused by this input. The importance of this assumption is discussed 
in [Adab 94, Broy 95].  

In addition, we assume that the hypothesis made by a specification about the validity of the 
received input at a given time instance does not depend on the output selected by the module 
at the same time instance. We call these two assumptions together the unit-delay constraint 
(UDC), which can be formally defined as follows: 

(c) Given a trace specifications R[AR] and a tuplet T ε R, we write next(T, R) for the 
relation that describes the possible interactions at the next time instant, formally: T’ ε 
next(T, R) iff the tuplet T’ is of length one and T.T’ ε R, where “.” denotes the 
pairwise concatenation of corresponding attribute values. 
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(d) A trace specification (relation) R[AR
I | AR

O] satisfies the UDC iff for any T ε R the 
following holds:  next(T, R) = proj AR

I (next(T, R))   join   proj AR
O (next(T, R)) 

For characterizing conformance relations, it is important to distinguish different cases of 
invalid traces. If a given trace (tuplet) T is not valid in respect to a given trace specification 
(relation) R[AR

I | AR
O] (i.e. not T ε R), we may consider the longest valid prefix of T; there 

must exist a time instant t > 0 such that T|t-1 ε R and T@t  ¬ε  next(T|t-1 , R)  (we use the 
notation where   ¬ε   means "not included in"). We now can distinguish whether the 
invalidity of the trace is caused by a wrong input or a wrong output at time instant t as 
follows: 

(i) Wrong output: We say that T has wrong output at time t, written T ε RWO(t) , iff  
T|t-1 ε R and proj AR

O T@t  ¬ε  proj AR
O next(T|t-1 , R).  

(ii) Wrong input: We say that T has wrong input at time t, written T ε RWI(t) , iff  T|t-1 
ε R and proj AR

I T@t  ¬ ε proj AR
I next(T|t-1 , R).  

Clearly, it could also happen that T has wrong input and wrong output at time t.  

Based on the above definitions, we can now formally define the meaning of a component 
specification R[AR

I | AR
O] (similar to [Abad 94]) as follows: 

(1) A trace T over the alphabet A = AR
I U AR

O satisfies the guarantees of R, written T satG 
R,  iff for all t > 0 the following holds: T|t-1 ε R implies  T  ¬ ε RWO(t) . 

(2)  A trace T over A satisfies the hypotheses of R, written T satH R,   iff for all t > 0 the 
following holds: T|t-1 ε R implies T  ¬ ε RWI(t) . 

(3)  A trace T over A satisfies the specification R, written T sat R, iff  (T satH R) implies (T 
satG R) 

(4) A trace T over an arbitrary (larger) alphabet satisfies the specification R[AR
I | AR

O] iff  
the projection of T onto A = AR

I U AR
O satisfies R. 

(5) Given an interconnection structure containing several components with their respective 
behavior specifications Rk (i = 1, 2, …, n), we say that a trace T satisfies the 
interconnection structure iff it satisfies the specifications of all component specifications 
Rk . 

(6) Another specification R’[AR
I | AR

O] conforms to R[AR
I | AR

O]  iff for all traces T we 
have (T sat R’) implies (T sat R). 

 

5.3. Equation solving for specifications with hypothesis and guarantees 
Taking into account the difference between input and output as discussed above, the problem 
of equation solving must be formulated in a form different from Equation (1) in Section 3. 
Now we want to find the most general specification for R2 such that all traces that satisfy the 
interconnection structure of the modules R1 and R2 (see Figure 5.1), and that also satisfy the 
hypothesis of R3, have the following two properties: (a) the guarantees of R3 are satisfied, 
and (b) the hypotheses of R1 are satisfied. 
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Figure  5.1 : Composition of components R1 and X with input/output interactions  
 
This can be formalized as follows.  We first note that we consider the alphabet A = A31

O  U  
A31

I  U  A32
O  U  A32

I  U  A12
O  U  A12

I , as shown in the figure. We introduce the following 
abbreviations for the alphabets of the modules R1, X and R3, respectively: 

A1  = A31
O  U  A31

I  U  A12
O  U  A12

I ,  
A2  = A32

O  U  A32
I  U  A12

O  U  A12
I ,  

A3  = A31
O  U  A31

I  U  A32
O  U  A32

I  . 

We also note that the elements of (A31
O  U   A12

O ) are the outputs of R1, the other elements 
of A1 are its inputs, A32

O  U  A12
I are the outputs of X, the other elements of A2 are its 

inputs, and  A31
O  U  A32

O  are the outputs of R3, the other elements of A3 are its inputs.  

Given two relations R1 and R3 , the equation solving problem, now, consists of finding a set 
of traces X[A2] which satisfies Equation (1IO) below: 

projA3 (R1 join X) conforms to R3                                                 (Equ. 1IO) 

Theorem: The set of traces Sol(IO) defined by Equation (3IO) is the largest set satisfying 
Equation (1IO): 

 Sol(IO) = Ch[A2] / projA2  Ut>0 (                                                      (Equ. 3IO) 

(R1
T join R3

WO(t) )  U  ( ( R1
T )WO(t) join R3 )  U  ( ( R1

T )WO(t) join R3
WO(t) )   ) 

where the notation  RT   denotes the relation R with the input/output markings of the ports 
interchanged. 

We note that  the traces in ( R1
T )WO(t) are the same (if one ignores the input/output 

assignment) as the traces in  R1
WI(t) , that is, these are the traces that do not satisfy the 

hypothesis that R1 makes about the input interactions. The proof of the above theorem is 
given in [Boch 01b]. 

 

5.4. The case of completely defined and deterministic finite state machines 

Submodule construction for deterministic, completely defined finite state machines is 
discussed in detail in Chapter 6 of [Kim 97].  Our above assumption of the unit-delay 
constraint corresponds to the assumption of Moore machines for which the output is a 
function of the current state. [Kim 97] mainly considers deterministic machines (for which 
the output is a function of the present state and the input) which are completely defined, that 
is, in each state and each input there is a specified next state and output; therefore there is no 
wrong input. Under these assumptions, Equation (3IO) becomes 

R1 X

R3 

A32
O

A12
O

A12
I

A32
IA31

O A31
I
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 Sol(IO) = Ch[A2] / projA2  Ut>0 (R1
T join R3

WO(t) )  

  =  Ch[A2] / projA2 (R1
T join R3

WO )  

where  R3
WO =   Ut>0  R3

WO(t) . This formula is quite similar to Equation (3) in which  (Ch[{a1, 
a2}] / R3 ) represents all non-allowed traces, while here these traces are represented by  R3

WO. 
Correspondingly, the only difference in the submodule construction algorithm for the 
completely defined FSMs that we are interested here and the algorithm described in Section 
4.3 is the way the R3 is completed with the introduction of a fail state. Here we introduce 
transitions to the fail state from each normal state of the FSM and each input for all output 
values that are different from the original definition of the FSM.   

The resulting submodule construction algorithm is essentially identical to the algorithm 
described in Chapter 6.3.1 of [Kim 97]. However, in our approach we allow for incompletely 
defined solutions if the behavior for certain states and inputs needs not be defined because 
such inputs will never happen. We therefore do not introduce explicitly the “{}” state used in 
[Kim 97]. As an example, we consider the specifications given in Figure 6.5 in [Kim 97] 
(space limitations do not allow us to give details here). The inputs and outputs labeled x, v, u, 
z in [Kim 97] correspond to the ports A31

I, A12
I, A12

O, and A31
O, respectively, in Figure 5.1. 

The interactions at the ports A32
O, and A32

I do not exist. The completion of the automaton M 
leads to the following transitions to the fail state: from state A under “1/0” and “0/1”; from 
state B under “0/0” and “1/0”. Applying the algorithm described above leads to the same 
automaton as the one shown in Figure 6.6 in [Kim 97], except for the “{}” state. Since Kim’s 
example does not satisfy the unit-delay constraint, we note that the algorithm described 
above worksin this case, even though the unit-delay constraint is not satisfied. It is not clear 
how far the unit-delay assumption may be weakened. 

 

5.5. The case of interleaving semantics 
In the case of interleaving semantics, there is at each time instant only a real interaction at 
one of the interfaces, while the other interfaces have the null interaction. In this context, the 
situation of wrong input is often called "unspecified reception" [Zafi 80].  

In this case, there can never be a time instant with wrong input for R1 and wrong output for 
R3. Therefore the term  ( R1

T )WO(t) join R3
WO(t) )  in Equation (3IO) of the theorem in Section 

5.3 is empty and can be dropped. Therefore the equation can be simplied, similarly as in the 
subsection above, to the form  

 Sol(IO) = Ch[A2] / projA2  Ut>0 (   (R1
T join R3

WO(t) )  U  ( ( R1
T )WO(t) join R3 )    ) 

  =   Ch[A2] / projA2 (  (R1
T join R3

WO )  U  ( ( R1
T )WO join R3 )  ) 

If we now consider the case of regular behaviors specified in terms of finite state automata, 
we come to consider IO-Automata [Lync 89] as finite representation of the regular behaviors. 
The submodule construction algorithm derived from the above equation is similar to the one 
for labeled transition systems considered in Section 4.4, except that we have now two classes 
of non-allowed traces, those giving rise to wrong behavior in respect to R3 and those giving 
rise to non-expected input to  R1 . We therefore introduce a fail state not only in  R3  but also 
in  R1 , and all traces in the determinized projected product of  R1

T  and R3 that lead to one of 
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these fail states must be eliminated. We note this algorithm is essentially identical to the 
algorithm described in Section 5 of [Dris 99b]. 

 

5.6. Algorithm for the general synchronous case 
If we consider regular specifications in the general case of synchronous communication 
described in Section 5.3, Equation (3IO) gives rise to a submodule construction algorithm 
very similar to the one described in Section 5.5. The main difference is that the synchronous 
composition operation is used. Again, we have to introduce fail states for R3 and R1. After 
forming the product, the projection and the determinization, we have to eliminate all 
transitions that lead to a state of the determinized specification that contains the fail state of 
either R3 or R1, and transitions that lead to a state that contains both.  Note that the text in 
italics takes care of the last term “( ( R1

T )WO(t) join R3
WO(t) )” in  Equation (3IO). 

 

6. Conclusions 
The problem of submodule construction (or equation solving for module composition) has 
some important applications for the real-time control systems, communication gateway 
design, and component re-use for system design in general. Several algorithms for solving 
this problem have been developed based on particular formalisms that were used for defining 
the dynamic behavior of the desired system and the existing submodule. In this paper, we 
have shown that this problem and its solution can also be formulated in the context of 
relational databases.   

The main result of this paper is to show that many submodule construction algorithms that 
have been proposed for different specification paradigms based on finite automata can be 
derived from this solution of the submodule construction problem within the context of 
relational databases. In fact, a set-theoretical formulation of this problem has been given in 
this context and solution formulas have been provided for two cases: (a) when there is no 
notion of input-output and trace inclusion is taken as conformance relation, and (b) when 
partial specifications with distinction of input - output and more complex conformance 
relations are considered. In both cases, synchronous communication as well as interleaving 
semantics may be considered. 

The solution formula for the case of input-output distinction is new and the corresponding 
submodule construction algorithm for the corresponding case of general synchronous 
automata is also new. 

In this paper we only consider trace semantics. The considerations of deadlocks and finer 
conformance relations based on progress or liveness are not considered here. Some 
references to work in that area are given in [Boch 02a]. 
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