
 1

Submodule construction for specifications with input assumptions and output
guarantees *

Gregor v. Bochmann

School of Information Technology and Engineering (SITE)

University of Ottawa, Canada

Abstract
We consider the following problem: For a system consisting of two submodules, the behavior
of one submodule is known as well as the desired behavior S of the global system. What
should be the behavior of the second submodule such that the behavior of the composition of
the two submodules conforms to S ? - Solutions to this problem have been described in the
context of various specification formalisms and various conformance relations. Here we
present a generalization of this problem and its solution in the context of relational databases,
and show that this general solution can be used to derive several of the known algorithms that
solve the problem in the context of regular behavior specifications based on finite state
automata with synchronous communication or interleaving semantics. The paper also
provides a new solution formula for the case that the module behaviors are specified in a
hypothesis-guarantee paradigm distinguishing between input and output. A new submodule
construction algorithm for synchronous, partially defined input/output automata is also given.

1. Introduction
In automata theory, the notion of constructing a product machine S from two given finite
state machines S1 and S2, written S = S1 x S2, is a well-known concept. This notion is very
important in practice since complex systems are usually constructed as a composition of
smaller subsystems, and the behavior of the overall system is in many cases equal to the
composition obtained by calculating the product of the behaviors of the two subsystems.
Here we consider the inverse operation, also called equation solving: Given the composed
system S and one of the components S1, what should be the behavior S2 of the second
component such that the composition of these two components will exhibit a behavior equal
to S. That is, we are looking for the value of X which is the solution to the equation S1 x X
= S. In fact, we are looking for the most general machine X which composed with S1
satisfies some conformance relation in respect to S. In the simplest case, this conformance
relation is trace inclusion.

A first paper of 1980 [Boch 80d] (see also [Merl 83]) gives a solution to this problem for the
case where the machine behavior is described in terms of labeled transition systems (LTS)
which communicate with one another by synchronous interactions (see also [Hagh 99] for a
more formal treatment). This work was later extended to the cases where the behavior of the
machines is described in CCS or CSP (with behavioral equivalence as conformance relation)
[Parr 89], by finite state machines (FSM) communicating through message queues [Petr 98,
Yevt 01a], by input/output automata [Dris 99] ([Qin 91] considers bisimulation as
conformance relation), and by synchronous finite state machines [Kim 97]. A restricted

* This work was partly supported by a research grant from the Natural Sciences and Engineering
Research Council of Canada. This paper was written when the author was a visiting professor at Osaka
University, Japan.

 2

version of this problem is considered in an earlier paper [Kim 72] which considers series
composition of FSMs where each message goes from the originating FSM to its neighbor on
the right (no feedback). The specification of the rightmost FSM is derived from the behavior
of the other FSMs and the desired behavior of the composition.

For a discussion of the applications of this equation-solving method in communication
protocol design and control theory, we refer the reader to [Boch 02a].

In this paper we show that the above equation solving problem in the different contexts of
LTS, synchronous and asynchronous FSMs and IOA are all special cases of a more general
problem which can be formulated in the context of relational database theory which is
generalized to allow for non-finite relations (i.e. relations representing infinite sets). We give
the solution of this general problem and give a proof of its correctness. We also show how
the different specialized version of this problem - and the corresponding solutions - can be
derived from the general database version.

After a review of basic notions of relational databases, we present in Section 3 the problem
of equation solving in the database context and provide solution formulas and their proofs. In
Section 4, we discuss how the database model can be adapted to model the dynamic behavior
of systems and their components based on trace semantics, that is, when the behavior of a
system component is characterized by the set of possible traces of interactions in which it
could participate. We consider the cases of synchronous rendezvous communication and
interleaving semantics. We also explain how the solution formula for databases can be used
to derive solution algorithms for systems with regular behavior (i.e. described by finite state
transition systems). In Section 5 we introduce the distinction of input and output which
allows the specification of a component behavior using the hypothesis-guarantee paradigm.
We state appropriate conformance relations which can be used to define the submodule
construction problem. We present a general solution formula which leads to several
submodule construction algorithms that can be applied to different variants of regular
behavior specifications, including a variant allowing for nondeterministic output and partially
defined behaviors.

2. Review of some notions from the theory of relational databases

The following concepts are defined in the context of the theory of relational databases [Maie
83]. Informally, a relational database is a collection of relations where each relation is usually
represented as a table with a certain number of columns. Each column corresponds to an
attribute of the relation and each row of the table is called a tuplet. Each tuplet defines a
value for each attribute of the relation. Such a tuplet represents usually an “object”, for
instance, if the attributes of the employee relation are name, city, age, then the tuplet <Alice,
Ottawa, 25> represents the employee “Alice” from “Ottawa” who is 25 years old.

The same attribute may be part of several relations. Therefore we start out with the definition
of all attributes that are of relevance to the system we want to describe.

Definition (attributes and their values): The set A = {a1, a2, …, am} is the set of attributes.
To each attribute ai is associated a (possibly infinite) set Di of possible values that this
attribute may take. Di is called the domain of the attribute ai . We define D = U Di to be the
discriminate union of the Di .

 3

R3

R1 R2

a1

a3

a2

Definition (relation): Given a subset Ar of A, a relation R over Ar, written R[Ar], is a
(possibly infinite) set of mappings T: Ar --> D with T(ai) ε Di. An integrity constraint is a
predicate on such mappings. If the relation R has an integrity constraint C, this means that for
each T ε R, C(T) is true.

Note: In the informal model where a relation is represented by a table, a mapping T
corresponds to a tuplet in the table. Here we consider relations that may include an infinite
number of different mappings.
Definition (projection): Given R[Ar] and Ax ⊆ Ar , the projection of R[Ar] onto Ax , written
projAx (R), is a relation over Ax with

T ε projAx (R) iff there exists T’ ε R such that for all ai ε Ax , T(ai) = T’(ai)

We note that T is the restriction of T’ to the subdomain Ax . We also write T = projAx (T’).

Definition (natural join): Given R1[A1] and R2[A2], we define the (natural) join of the
relations R1 and R2 to be a relation over A1 U A2 , written R1 join R2 , with

 T ε (R1 join R2) iff projA1 (T) ε R1 and projA2 (T) ε R2

Definition (chaos): Given Ar ⊆ A, we call chaos over Ar , written Ch[Ar] , the relation which
includes all elements T of Ar --> D with T(ai) ε Di , that is, the union of all relations over Ar.

Note: We note that Ch[Ar] is the Cartesian product of the domains of all the attributes in Ar .
The notion of “chaos” is not common in database theory. It was introduced by Hoare [Hoar
85] to denote the most general possible behavior of a module. It was also used in several
papers on submodule construction [Petr 98, Dris 99b].

It is important to note that we consider here infinite attribute value domains and relations that
contain an infinite number of mappings (tuplets). In the context of traditional database
theory, these sets are usually finite (although some results on infinite databases can be found
in [Abit 95]). This does not change the form of our definitions, however. If one wants to
define algorithms for solving equations involving such infinite relations, one has to worry
about the question of what kind of finite representations should be adopted to represent these
relations. The choice of such representations will determine the available algorithms and at
the same time introduce restrictions on the generality of these algorithms. Some of these
representation choices are considered in Sections 4 and 5.

3. Equation solving in the context of relational databases
We consider here a very simple configuration with three attributes a1, a2, and a3, and three
relations R1[{a2, a3}], R2[{a1, a3}], and R3[{a2, a1}] as shown in the figure below. A more
general architecture has been considered in [Boch 02a].

Figure 3.1: Configuration of 3 relations sharing 3 attributes

 4

We consider the following equation (which is in fact an inclusion relation)

 proj {a2, a1} (R1 join R2) ⊆ R3 (Equ. 1)

If the relations R1 and R3 are given, we can ask the question: for what relation R2 will the
above equation be true. Clearly, the empty relation, R2 = Φ (empty set), satisfies this
equation. However, this case is not very interesting. However, we note that there is always a
single maximal solution. This solution is the set

Sol(2) = {T ε Ch[{a1, a3}] | proj {a2, a1} (R1 join {T}) ⊆ R3 } (Equ. 2)

This is true because the operators of set union and intersection obey the distributive law in
respect to the join operation, that is, Ri join (Rj union Rk) = (Ri join Rj) union (Ri join Rk);
and similarly for intersection.

While the above characterization of the solution is trivial, the following formula is useful for
deriving algorithms that obtain the solution in the context of the specific representations
discussed in Sections 4 and 5.

Theorem: A solution for R2 that satisfies Equation (1), given R1 and R3 , is given by
the following formula (where “/” denotes set substraction):

Sol(3) = Ch[{a1, a3}] / proj{a1, a3} (R1 join (Ch[{a1, a2}] / R3)) (Equ. 3)

This is the largest solution and all other solutions of Equ. (1) are included in this one.

Informally, Equation (3) means that the largest solution consists of all tuplets over {a1, a3}
that cannot be obtained from a projection of a tuplet T [{a1, a2, a3}] that can be obtained by a
join from an element of R1 and a tuplet from Ch[{a1, a2}] that is not in R3.

We note that the smaller solution

 Sol(3*) = proj{a1, a3} (R1 join R3) / proj{a1, a3} (R1 join (Ch[{a1, a2}] / R3)) (Equ. 3*)

is also an interesting one, because it contains exactly those tuplets of Sol(3) that can be joint
with some tuplet of R1 to result in a tuplet whose projection on {a1, a2} is in R3 . Therefore
(R1 join Sol(3)) and (R1 join Sol(3*)) are the same set of tuplets; that means the same subset of
R3 is obtained by these two solutions. In this sense, these solutions are equivalent. We note
that the solution formula given in [Merl 83] corresponds to the solution Sol(3*).

Proof of the theorem: First we note that (T2 ε Sol(3)) is equivalent to the statement that
there exist no T ε Ch [{a1, a2, a3}] such that (Equivalence 4)

 proj{a1, a3}(T) = T2 and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3

We have to prove that Sol(3) = Sol(2) . In order to show that Sol(3) ⊆ Sol(2), we show that

 proj {a2, a1} (R1 join Sol(3)) ⊆ R3 (Equ. 5)
Taking any T’ ε (R1 join Sol(3)), we have proj{a2, a3}(T’) ε R1 and proj{a1, a3}(T’) ε Sol(3) . Since
proj{a1, a3}(T’) ε Sol(3) , there is, according to Equivalence (4), no T ε Ch [{a1, a2, a3}] such
that proj{a1, a3}(T) = proj{a1, a3}(T’) and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3 . Since T’
satisfies the first two of these three conditions, we conclude that the last condition must be
false for T’. Therefore we have that proj{a1, a2}(T’) ε R3 which implies Equation (5).

 5

In order to prove that Sol(3) ⊇ Sol(2) , we assume that this is not true and that there exist a
tuplet T’ that is in Sol(2) , but not in Sol(3) . However, the latter implies, according to
Equivalence (4), that there exists a T ε Ch [{a1, a2, a3}] such that

 proj{a1, a3}(T) = T’ and T1 =def proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3 (Equ. 6)

Considering the definition of the join operation, we conclude that {T} = {T’} join {T1} since
the join of two singleton relations contains at most one tuplet. But now we have a
contradiction because (T’ ε Sol(2)) implies proj{a1, a2} ({T’} join {T1}) ⊆ R3 while Equation
(6) states proj{a1, a2} ({T’} join {T1}) ¬ε R3 . Therefore our assumption must be false.
Q.E.D.

4. Equation solving in the context of composition of sequential machines or reactive
software components

4.1. Modeling system components and behavior using traces
Sequential machines and reactive software components are often represented as black boxes
with ports. The ports are the places where the interactions between the component in
question and the components in its environment take place.

For allowing the different modules to communicate with one another, their ports must be
interconnected. Such interconnection points are usually called interfaces. An example of a
composition of three modules (sequential machines or reactive software components) is
shown in Figure 4.1. Their ports are pair-wise interconnected at three interfaces a1, a2, and a3.

Figure 4.1 : Configuration of 3 components interconnected through 3 interfaces
The dynamic behavior of a module (sequential machine or a reactive software component) is
usually described in terms of traces, that is, sequences of interactions that take place at the
interfaces to which the module is connected. Given an interconnection structure of several
modules and interfaces, we define for each interface i the set of possible interactions Ii that
may occur at that interface. For each (finite) system execution trace, the sequence of
interactions observed at the interface ai is therefore an element of Ii * (a finite sequence of
elements in Ii).

For communication between several modules, we consider in this paper rendezvous
interactions. This means that, for an interaction to occur at an interface, it is necessary that all
modules connected to that interface must make a state transition compatible with that
interaction at that interface.

In our basic communication model we assume that the interactions between the different
modules within the system are synchronized by a clock, and that there must be an interaction
at each interface during each clock period. We call this “synchronous operation”.

R1 R2

R3

a1a2

a3

 6

4.2. Correspondence with the relational database model
We note that the above model of communicating system components can be described in the
formalism of (infinite) relational databases as follows:

(1) A port corresponds to an attribute and a module to a relation. For instance, the
interconnection structure of Figure 4.1 corresponds to the relationship shown in
Figure 3.1. The interfaces a1, a2, and a3 in Figure 4.1 correspond to the three attributes
a1, a2, and a3 in Figure 3.1, and the three modules correspond to the three relations.

(2) If a given port (or interface) corresponds to a particular attribute ai, then the possible
execution sequences Ii* occurring at that port correspond to the possible values of that
interface, i.e. Di = Ii* .

(3) The behavior of a module Mx is given by the tuplets Tx contained in the
corresponding relation Rx [Ax], where Ax corresponds to the set of ports of Mx. That
is, a trace tx of the module X corresponds to a tuplet Tx which assigns to each
interface ai the sequence of interactions sxi observed at that interface during the
execution of this trace. We write sxi @t to denote the t-th element of sxi

Since we assume “synchronous operation” (as defined in Section 4.1), all tuplets in a relation
describing the behavior of a module must satisfy the following constraint:

Synchrony constraint: The length of all attribute values are equal. (This is the length of
the trace described by this tuplet.)

4.3. The case of synchronous finite state machines
If we restrict ourselves to the case of regular behavior specifications, where the (infinite) set
of traces of a module can be described by a finite state transition model, we can use Equation
(3) or Equation (3*) to derive an algorithm for equation solving. In this case, the behavior
specification for a module is given in the form of a finite state automaton (similar to labeled
transition systems) where each transition is labeled by a set of interactions, one for each port
of the module. We note that the synchronous composition considered here is different than
the synchronous composition of Mealy or Moore machines, as considered in [Kim 97] since
the latter distinguish between input and output, as discussed in Section 5. (It appears that the
complete version of [Yevt 01a] also deals with this synchronous case).

The algorithm for equation solving is obtained from Equation (3) or Equation (3*) by
replacing the relational database operators projection, join and substraction by the
corresponding operations on finite state automata. The database projection corresponds to
eliminating those interaction labels from all transitions of the automaton which correspond to
attributes that are not included in the set of ports onto which the projection is done. This
operation, in general, introduces nondeterminism in the resulting automaton. The
substraction operation is of linear complexity if its two arguments are deterministic finite
state automata. Since the projection operator introduces nondeterminism, one has to include a
step to transform the nondeterministic automata obtained from the projection into its
equivalent deterministic form. This step is in general of exponential complexity. However,
our experience with some examples involving the interleaved semantics described below
[Dris 99a] indicates that reasonably complex systems can be handled in many cases. The

 7

well-known algorithm for performing this step consists of building a deterministic automata
which has as its states the possible subsets of states (of the original automaton) that are
reachable after a given trace of interactions.

In fact, the substraction operations involved in Equation (3) are of a special form; they
represent the construction of the complement. This is a simple operation for a deterministic
automaton. In a first step, the automaton is completed, that is, an additional (non-accepting)
state, called fail state, is introduced, and from each state of the automaton additional
transitions are created from the state to the fail state for all those interaction labels for which
the original automaton has no transition from that state. There is also a self-loop on the fail
state for all possible interaction labels. This first step does not change the traces of
interactions accepted by the automaton. The second step performs the complement by
exchanging the accepting and non-accepting states.

The join operation corresponds to the composition operator of automata which is of
polynomial complexity. In the case of the synchronous operation considered here, the
composition is defined as follows.

Synchronous composition: Given two automata R1 [a1, a3] and R2 [a2, a3] with sets of
states S1 and S2, respectively, and transitions written si – x, y --> si’ with si and si’ ε Si, for i
= 1, 2, and where x and y are interactions at the two ports of the automaton in question. The
synchronous composition of these two automaton is an automaton R [a1, a2, a3] which is
defined as follows:

(a) The states of R are of the form (s1, s2) where s1 ε S1 and s2 ε S2; the initial state is the
pair of the initial states of the R1 and R2, and a state (s1, s2) is accepting if s1and s2
are accepting in their respective automata.

(b) R3 includes a transition (s1, s2) – x, y, z --> (s1’, s2’) iff the transitions
s1 – x, z --> s1’ and s2 – y, z --> s2’ exist in their respective automata.

The composition of two automata can be easily constructed by starting from the initial state
and constructing all states of the composition that are reachable.

Figure 4.2 shows a simple example. R3 and R1 are given. The note “Notation (x1,x2)” for R3
means that the transition labels of R3 first contain the interaction at interface a1 and then at a2.
The submodule construction algorithm proceeds as follows: First R3 is completed with the
introduction of a fail state, then the product with R1 is constructed. When the interations at
the interface a2 are projected out, there is nondeterminism in state (2,2) for the label (n,n,d).
This leads to a determinized automaton. From this automaton, all traces leading to a state
containing fail should be eliminated. This leads to the elimination of the transition (n,n) from
state ((4,3), (5,3)), but then also the transition leading to this state is eliminated since this
state represents a deadlock. (Deadlock elimination is not further considered here).

4.4. The case of interleaving rendezvous communication
In this subsection, we consider non-synchronous rendezvous communication also called
interleaving semantics, were at each instant in time at most one interaction takes place within
all interconnected system components. This communication paradigm is used, for instance,
with labeled transition systems (LTS), CSP and LOTOS. One way to model the behavior of
such systems is to consider a global execution trace which is the sequence of interactions in

 8

the order in which they take place at the different interfaces (one interface at a time). Each
element of such an execution sequence defines the interface ai at which the interaction occurs
and the interaction vi which occurs at that interface.

Figure 4.2: Example of submodule construction for synchronous automata
Another way to represent the behavior of such systems is to reduce it to the case of
synchronous communication as follows. This is the approach which we adopt in this paper
because it shows how the interleaving rendezvous communication can be based on our
relational database model. In order to model the interleaving semantics, we postulate that all
sets Ii include a dummy interaction, called null. It represents the fact that no interaction takes
place at the interface. We then postulate that each tuplet T of a relation R[A] satisfies the
following constraint:

Interleaving constraint: For all time instants t (t > 0) we have that T(ai)[t] ≠ null
implies T(aj)[t] = null for all aj ε A (j ≠ i)

proj (R1 join R3)
determinized

(a,n)

(b,n)

(a,n) (n,c)

(n,d)

(n,d)R3 R1

(n,n)
(b,n)

(b,n)

(a,n)

(a,n)
Notation (x1,x2)

Notation (x1,x3)

R3 completed

2 2
1 213 3

4

5

6

(a,n)

(b,n)

(n,n)

2
1 3

(a,n)
(a,n) (b,n)

(b,n)
(n,n)

(n,n)

fail
(n,a,n) (n,n,c)

(n,n,d)

(n,n,d)

R1 join R3

(n,b,n)

(n,b,n)

(n,a,n)

(n,a,n)

2,2
21,1 3,3

4,3

5,3

6,1

6,fail

Notation (x1,x2,x3)

(n,n) (n,c)

(n,d)

(n,n)

(n,n)

(n,n)

2,2
1,1 3,3

4,3
5,3

6,1

6,fail

Notation (x1,x3)

6,1

(n,n) (n,c) (n,n)
(n,n)

2,2
1,1 3,3

6,1

Notation (x1,x3)

Solution

 9

We note that tuplets that are equal to one another except for the insertion of time periods
during which all interfaces have the null interaction are equivalent as far as the sequence of
non-null interactions is concerned. Note that this equivalence is sometimes called stuttering
equivalence. In the following we are only interested in equivalent classes in respect to this
stuttering equivalence. Such a class may be represented by the interaction sequence in the
class that has no time instance with null interactions at all interfaces. We say that such an
interaction sequence is of “normal form”. We also assume that each relation contains, with
each sequence of interactions, also all other sequences that are stuttering equivalent to it. We
call this the stuttering completeness assumption.

The relational database operators projection and substraction apply under the interleaving
constraint in the normal way. However, the result obtained by the joining of two relations
satisfying the interleaving constraint may include tuplets that do not satisfy this constraint,
because the joint interaction sequences may have non-null interactions at the same time at
different interfaces. We assume that such sequences not satisfying the interleaving constraint
will be eliminated from the original result of the join. However, because of the stuttering
completeness assumption, there will also be an interaction sequence in the original join
results which contains the conflicting interactions at different time instants. Therefore the
result of a join will include all the interleavings of the non-null interactions as far as they are
conform with each of the joint relations. We can therefore conclude that the interleaving
semantics defined here corresponds exactly to the well-known interleaving semantics of
labeled transition systems.

4.5. The case of finite labeled transition systems
To simplify the notation, we assume that the sets of interactions at different interfaces are
disjoint (i.e. Ii intersection Ij = empty for ai ≠ aj), and we introduce the overall set of
interactions I = U(ai ε A) Ii. Then a class of stuttering equivalent interleaving traces (as
described in Section 4.4) corresponds one-to-one to a sequence of interactions in I.

If we restrict ourselves to the case where the possible traces of a module are described by a
finite LTS, the resulting set of possible execution sequences are regular sets. In fact, a finite
LTS is a finite state automaton with only accepting states. Therefore the operations
projection, and substraction over interleaving traces can be represented by finite operations
over the corresponding automata representations, as in the case of synchronous operation
discussed in Section 4.4. Again, the projection may introduce nondeterminism (in the form of
spontaneous transitions, sometimes written with label i) and a determination step is required
before the substraction operation. Finally, the join operation represents the composition of
LTSs and is defined as follows:

Interleaved composition: Given two automata R1 [a1, a3] and R2 [a2, a3] with sets of states
S1 and S2, respectively, and transitions written si – x --> si’ with si and si’ ε Si, for i = 1, 2,
and where x is an interaction at one of the two ports of the automaton in question. The
interleaved composition of these two automaton is an automaton R [a1, a2, a3] which is
defined as follows:

(a) The states of R are of the form (s1, s2) as for synchronous composition.

 10

(b) R3 includes a transition (s1, s2) – x --> (s1’, s2’) iff one of the following conditions is
satisfied:

• x ε I1 and s1 – x --> s1’ and s2 = s2’

• x ε I2 and s2 – x --> s2’ and s1 = s1’

• x ε I3 and s1 – x --> s1’ and s2 – x --> s2’

The submodule construction algorithm defined by Equation (3*) based on the operations on
automata described above is equal to the construction algorithm that we described earlier
[Boch 80d, Merl 83]. The proof of correctness of Equation (3) given in Section 3 also
provides a proof of this algorithm.

The example of Figure 4.2 may be considered as an example for interleaving semantics. In
fact, the specification has the particular form that, if we consider the interaction written “n”
as the null interaction, then all the specifications in the figure satisfy the interleaving
constraint.

5. Distinction of input and output

5.1. Module specification based on hypothesis and guarantees
The rendezvous communication paradigm considered in Section 4 has a drawback when it
comes to its use for requirements specification. Usually, the requirements for a system
module has two parts: (a) the hypothesis that the module may make about the behavior of the
other modules within its environment and general operating assumptions such as temperature
ranges etc., and (b) the guarantees that the module must provide concerning the behavior it
will exhibit during execution.

The distinction between these two aspects cannot be made clearly with the rendezvous
communication paradigm because for any interaction to occur, it is necessary that all
participating modules are ready for it. There is no notion that one of the modules is
particularly responsible for initiating the interaction.

We consider in the following a communication paradigm where, for each interaction taking
place at some interface, there is one participating module for which the interaction is output,
and it is input for all other modules that are connected to that interface. Whether the
interaction will take place or not, and what its parameters will be, will solely be determined
by the outputting module (the interaction must satisfy the guarantees provided by this
module). The other participating modules for which the interaction is input do not influence
the occurrence of the interaction and the values of its parameters. However, they may make
the hypothesis that the outputting modules will satisfy the guarantees defined by their
respective specifications, thus limiting the range of possibilities for receiving the interaction
in question.

This paradigm is the basis for the semantics of (input-output) finite state machines,
Input/Output Automata (IOA) [Lync 89], as well as many software specification formalisms,
such as [Adab 95, Misr 81]. It seems that this paradigm also subsumes the paradigm of
controllable and uncontrollable interactions as considered for discrete event control design
[Rama 89]. We note that in the case of finite state machines and IOA, we consider partially

 11

defined machines; the hypothesis is made that only those inputs will occur for which a
transition is defined.

We can introduce the distinction between input and output in our general relational database
formalism as follows: Each attribute of a relation is marked as either input or output. An
attribute of a relation resulting from a join operation is marked input if the same attribute is
marked as input in the two operands of the join operation, otherwise it is marked output. A
join operation is said to have output conflict if there is an attribute that is marked output for
both operands. We consider in the following only join operations without output conflict.

We now introduce the following notations. Given a relation R[AR] and a tuplet T ε R, we
write T|t for the tuplet which has as values for an attribute ai ε AR the prefix (of length t) of
the value which T has for this attribute. For example, if T = <abc, def> then T|2 = <ab, de>.
And we write T@t for the tuplet which has as value for an attribute ai ε AR the t-th elemenbt
of the sequence which is the value of T for this attribute.For the example of T above, we have
T@1 = <a, d> and T@3 = <c, f>. Similarly, we write T@t(ai) to denote the t-th element of
T(ai).

In order to clearly distinguish between the input and output attributes of a relation R, we
write R[AR

I | AR
O] where ai ε AR

I are the input attributes of R and ai ε AR
O the attributes

marked output.

5.2. Conformance relations
In trace semantics without the distinction of input and output, as discussed in Section 4, the
conformance relations are very simple and can be summarized by the following definitions:

(a) Valid trace: A tuplet (trace) T is valid in respect to a relation (specification) R if T ε
R.

(b) Trace inclusion: An specification R’ conforms to a specification R iff all the traces of
R’ are also valid in respect to R.

In order to define meaningful relations in the context of synchronous operation, we assume
that a specification satisfies the constraint that the output allowed at time t by the
specification does not depend on the input received at time t (but only on previous inputs and
outputs). This implies that a delay of at least one time unit exists between a received input
and the output which is caused by this input. The importance of this assumption is discussed
in [Adab 94, Broy 95].

In addition, we assume that the hypothesis made by a specification about the validity of the
received input at a given time instance does not depend on the output selected by the module
at the same time instance. We call these two assumptions together the unit-delay constraint
(UDC), which can be formally defined as follows:

(c) Given a trace specifications R[AR] and a tuplet T ε R, we write next(T, R) for the
relation that describes the possible interactions at the next time instant, formally: T’ ε
next(T, R) iff the tuplet T’ is of length one and T.T’ ε R, where “.” denotes the
pairwise concatenation of corresponding attribute values.

 12

(d) A trace specification (relation) R[AR
I | AR

O] satisfies the UDC iff for any T ε R the
following holds: next(T, R) = proj AR

I (next(T, R)) join proj AR
O (next(T, R))

For characterizing conformance relations, it is important to distinguish different cases of
invalid traces. If a given trace (tuplet) T is not valid in respect to a given trace specification
(relation) R[AR

I | AR
O] (i.e. not T ε R), we may consider the longest valid prefix of T; there

must exist a time instant t > 0 such that T|t-1 ε R and T@t ¬ε next(T|t-1 , R) (we use the
notation where ¬ε means "not included in"). We now can distinguish whether the
invalidity of the trace is caused by a wrong input or a wrong output at time instant t as
follows:

(i) Wrong output: We say that T has wrong output at time t, written T ε RWO(t) , iff
T|t-1 ε R and proj AR

O T@t ¬ε proj AR
O next(T|t-1 , R).

(ii) Wrong input: We say that T has wrong input at time t, written T ε RWI(t) , iff T|t-1
ε R and proj AR

I T@t ¬ ε proj AR
I next(T|t-1 , R).

Clearly, it could also happen that T has wrong input and wrong output at time t.

Based on the above definitions, we can now formally define the meaning of a component
specification R[AR

I | AR
O] (similar to [Abad 94]) as follows:

(1) A trace T over the alphabet A = AR
I U AR

O satisfies the guarantees of R, written T satG
R, iff for all t > 0 the following holds: T|t-1 ε R implies T ¬ ε RWO(t) .

(2) A trace T over A satisfies the hypotheses of R, written T satH R, iff for all t > 0 the
following holds: T|t-1 ε R implies T ¬ ε RWI(t) .

(3) A trace T over A satisfies the specification R, written T sat R, iff (T satH R) implies (T
satG R)

(4) A trace T over an arbitrary (larger) alphabet satisfies the specification R[AR
I | AR

O] iff
the projection of T onto A = AR

I U AR
O satisfies R.

(5) Given an interconnection structure containing several components with their respective
behavior specifications Rk (i = 1, 2, …, n), we say that a trace T satisfies the
interconnection structure iff it satisfies the specifications of all component specifications
Rk .

(6) Another specification R’[AR
I | AR

O] conforms to R[AR
I | AR

O] iff for all traces T we
have (T sat R’) implies (T sat R).

5.3. Equation solving for specifications with hypothesis and guarantees
Taking into account the difference between input and output as discussed above, the problem
of equation solving must be formulated in a form different from Equation (1) in Section 3.
Now we want to find the most general specification for R2 such that all traces that satisfy the
interconnection structure of the modules R1 and R2 (see Figure 5.1), and that also satisfy the
hypothesis of R3, have the following two properties: (a) the guarantees of R3 are satisfied,
and (b) the hypotheses of R1 are satisfied.

 13

Figure 5.1 : Composition of components R1 and X with input/output interactions

This can be formalized as follows. We first note that we consider the alphabet A = A31

O U
A31

I U A32
O U A32

I U A12
O U A12

I , as shown in the figure. We introduce the following
abbreviations for the alphabets of the modules R1, X and R3, respectively:

A1 = A31
O U A31

I U A12
O U A12

I ,
A2 = A32

O U A32
I U A12

O U A12
I ,

A3 = A31
O U A31

I U A32
O U A32

I .

We also note that the elements of (A31
O U A12

O) are the outputs of R1, the other elements
of A1 are its inputs, A32

O U A12
I are the outputs of X, the other elements of A2 are its

inputs, and A31
O U A32

O are the outputs of R3, the other elements of A3 are its inputs.

Given two relations R1 and R3 , the equation solving problem, now, consists of finding a set
of traces X[A2] which satisfies Equation (1IO) below:

projA3 (R1 join X) conforms to R3 (Equ. 1IO)

Theorem: The set of traces Sol(IO) defined by Equation (3IO) is the largest set satisfying
Equation (1IO):

 Sol(IO) = Ch[A2] / projA2 Ut>0 ((Equ. 3IO)

(R1
T join R3

WO(t)) U ((R1
T)WO(t) join R3) U ((R1

T)WO(t) join R3
WO(t)))

where the notation RT denotes the relation R with the input/output markings of the ports
interchanged.

We note that the traces in (R1
T)WO(t) are the same (if one ignores the input/output

assignment) as the traces in R1
WI(t) , that is, these are the traces that do not satisfy the

hypothesis that R1 makes about the input interactions. The proof of the above theorem is
given in [Boch 01b].

5.4. The case of completely defined and deterministic finite state machines

Submodule construction for deterministic, completely defined finite state machines is
discussed in detail in Chapter 6 of [Kim 97]. Our above assumption of the unit-delay
constraint corresponds to the assumption of Moore machines for which the output is a
function of the current state. [Kim 97] mainly considers deterministic machines (for which
the output is a function of the present state and the input) which are completely defined, that
is, in each state and each input there is a specified next state and output; therefore there is no
wrong input. Under these assumptions, Equation (3IO) becomes

R1 X

R3

A32
O

A12
O

A12
I

A32
IA31

O A31
I

 14

 Sol(IO) = Ch[A2] / projA2 Ut>0 (R1
T join R3

WO(t))

 = Ch[A2] / projA2 (R1
T join R3

WO)

where R3
WO = Ut>0 R3

WO(t) . This formula is quite similar to Equation (3) in which (Ch[{a1,
a2}] / R3) represents all non-allowed traces, while here these traces are represented by R3

WO.
Correspondingly, the only difference in the submodule construction algorithm for the
completely defined FSMs that we are interested here and the algorithm described in Section
4.3 is the way the R3 is completed with the introduction of a fail state. Here we introduce
transitions to the fail state from each normal state of the FSM and each input for all output
values that are different from the original definition of the FSM.

The resulting submodule construction algorithm is essentially identical to the algorithm
described in Chapter 6.3.1 of [Kim 97]. However, in our approach we allow for incompletely
defined solutions if the behavior for certain states and inputs needs not be defined because
such inputs will never happen. We therefore do not introduce explicitly the “{}” state used in
[Kim 97]. As an example, we consider the specifications given in Figure 6.5 in [Kim 97]
(space limitations do not allow us to give details here). The inputs and outputs labeled x, v, u,
z in [Kim 97] correspond to the ports A31

I, A12
I, A12

O, and A31
O, respectively, in Figure 5.1.

The interactions at the ports A32
O, and A32

I do not exist. The completion of the automaton M
leads to the following transitions to the fail state: from state A under “1/0” and “0/1”; from
state B under “0/0” and “1/0”. Applying the algorithm described above leads to the same
automaton as the one shown in Figure 6.6 in [Kim 97], except for the “{}” state. Since Kim’s
example does not satisfy the unit-delay constraint, we note that the algorithm described
above worksin this case, even though the unit-delay constraint is not satisfied. It is not clear
how far the unit-delay assumption may be weakened.

5.5. The case of interleaving semantics
In the case of interleaving semantics, there is at each time instant only a real interaction at
one of the interfaces, while the other interfaces have the null interaction. In this context, the
situation of wrong input is often called "unspecified reception" [Zafi 80].

In this case, there can never be a time instant with wrong input for R1 and wrong output for
R3. Therefore the term (R1

T)WO(t) join R3
WO(t)) in Equation (3IO) of the theorem in Section

5.3 is empty and can be dropped. Therefore the equation can be simplied, similarly as in the
subsection above, to the form

 Sol(IO) = Ch[A2] / projA2 Ut>0 ((R1
T join R3

WO(t)) U ((R1
T)WO(t) join R3))

 = Ch[A2] / projA2 ((R1
T join R3

WO) U ((R1
T)WO join R3))

If we now consider the case of regular behaviors specified in terms of finite state automata,
we come to consider IO-Automata [Lync 89] as finite representation of the regular behaviors.
The submodule construction algorithm derived from the above equation is similar to the one
for labeled transition systems considered in Section 4.4, except that we have now two classes
of non-allowed traces, those giving rise to wrong behavior in respect to R3 and those giving
rise to non-expected input to R1 . We therefore introduce a fail state not only in R3 but also
in R1 , and all traces in the determinized projected product of R1

T and R3 that lead to one of

 15

these fail states must be eliminated. We note this algorithm is essentially identical to the
algorithm described in Section 5 of [Dris 99b].

5.6. Algorithm for the general synchronous case
If we consider regular specifications in the general case of synchronous communication
described in Section 5.3, Equation (3IO) gives rise to a submodule construction algorithm
very similar to the one described in Section 5.5. The main difference is that the synchronous
composition operation is used. Again, we have to introduce fail states for R3 and R1. After
forming the product, the projection and the determinization, we have to eliminate all
transitions that lead to a state of the determinized specification that contains the fail state of
either R3 or R1, and transitions that lead to a state that contains both. Note that the text in
italics takes care of the last term “((R1

T)WO(t) join R3
WO(t))” in Equation (3IO).

6. Conclusions
The problem of submodule construction (or equation solving for module composition) has
some important applications for the real-time control systems, communication gateway
design, and component re-use for system design in general. Several algorithms for solving
this problem have been developed based on particular formalisms that were used for defining
the dynamic behavior of the desired system and the existing submodule. In this paper, we
have shown that this problem and its solution can also be formulated in the context of
relational databases.

The main result of this paper is to show that many submodule construction algorithms that
have been proposed for different specification paradigms based on finite automata can be
derived from this solution of the submodule construction problem within the context of
relational databases. In fact, a set-theoretical formulation of this problem has been given in
this context and solution formulas have been provided for two cases: (a) when there is no
notion of input-output and trace inclusion is taken as conformance relation, and (b) when
partial specifications with distinction of input - output and more complex conformance
relations are considered. In both cases, synchronous communication as well as interleaving
semantics may be considered.

The solution formula for the case of input-output distinction is new and the corresponding
submodule construction algorithm for the corresponding case of general synchronous
automata is also new.

In this paper we only consider trace semantics. The considerations of deadlocks and finer
conformance relations based on progress or liveness are not considered here. Some
references to work in that area are given in [Boch 02a].

Acknowledgements

I would like to thank the late Philip Merlin with whom I started to work in the area of
submodule construction. I would also like to thank Nina Yevtushenko (Tomsk University,
Russia) for many discussions about submodule construction algorithms and the idea that a

 16

generalization of the concept could be found for different behavior specification formalisms.
I would also like to thank my former colleague Cory Butz for giving a very clear presentation
on Bayesian databases which inspired me the database generalization described in Section 3
in this paper. Finally, I would like to thank my former PhD students Z.P. Tao and Jawad
Drissi whose work contributed to my understanding of this problem.

References
[Abad 95] M. Abadi and L. Lamport, Conjoining specifications, ACM Transactions on Programming
Languages & Systems, vol.17, no.3, May 1995, pp. 507-34.
[Abit 95] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Add.-Wesley, 1995.
[Boch 80d] G. v. Bochmann and P. M. Merlin, On the construction of communication protocols,
ICCC, 1980, pp.371-378, reprinted in "Communication Protocol Modeling", edited by C. Sunshine,
Artech House Publ., 1981; russian translation: Problems of Intern. Center for Science and Techn.
Information, Moscow, 1981, no. 2, pp. 146-155.
[Boch 01b] G. v. Bochmann, Submodule construction - the inverse of composition, Technical
Report, Sept. 2001, University of Ottawa.
[Boch 02a] G. v. Bochmann, Submodule construction and supervisory control: a generalization, to
appear in Proc. of Int. Conf. on Implementation and Applications of Automata (invited paper),
August 2001, Pretoria, South Africa, to be published as Springer Lecture Notes.
[Broy 95] M. Broy, Advanced component interface specification, Proc. TPPP'94, Lecture Notes in
CS 907, 1995, pp. 369-392.
[Dris 99a] J. Drissi and G. v. Bochmann, Submodule construction tool, in Proc. Int. Conf. on
Computational Intelligence for Modelling, Control and Automation, Vienne, Febr. 1999, (M.
Mohammadian, Ed.), IOS Press, pp. 319-324.
[Dris 00] J. Drissi and G. v. Bochmann, Submodule construction for systems of timed I/O automata,
submitted for publication, see also J. Drissi, PhD thesis, Univ. of Montreal, March 2000 (in French).
[Hagh 99] E. Haghverdi and H. Ural, Submodule construction from concurrent system specifications,
Information and Software Technology, Vo. 41 (1999), pp. 499-506.
[Hoar 85] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[Kele 94] S. G. H. Kelekar, Synthesis of protocols and protocol converters using the submodule
construction approach, Proc. PSTV, XIII, A. Danthine et al (Eds), 1994.
[Kim 72] J.Kim, and M.M.Newborn, The simplification of sequential machines with input
restrictions, IRE Trans. on Electronic Computers. December, 1972, pp. 1440-1443.
[Kim 97] T.Kim, T.Villa, R.Brayton, A.Sangiovanni-Vincentelli. Synthesis of FSMs: functional
optimization. Kluwer Academic Publishers, 1997.
[Lync 89] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata, CWI Quarterly,
2(3), 1989, pp. 219-246.
[Maie 83] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville,
Maryland, 1983.
[Merl 83] P. Merlin and G. v. Bochmann, On the Construction of Submodule Specifications and
Communication Protocols, ACM Trans. on Programming Languages and Systems, Vol. 5, No. 1 (Jan.
1983), pp. 1-25.
[Misr 81] J. Misra and K. M. Chandy, Proofs of networks of processes, IEEE Tr. on SE, Vol. SE-7
(July 1991), pp. 417-426.
[Parr 89] J. Parrow, Submodule Construction as Equation Solving in CCS, Theoretical Computer
Science, Vol. 68, 1989.
[Petr 96a] A. Petrenko, N. Yevtushenko, G. v. Bochmann and R. Dssouli, Testing in context:
framework and test derivation, Computer Communications Journal, Special issue on Protocol
engineering, Vol. 19, 1996, pp.1236-1249.

 17

[Petr 98] A. Petrenko and N. Yevtushenko, Solving asynchronous equations, in Proc. of IFIP
FORTE/PSTV'98 Conf., Paris, Chapman-Hall, 1998.
[Qin 91] H. Qin and P. Lewis, Factorisation of finite state machines under strong and observational
equivalences, J. of Formal Aspects of Computing, Vol. 3, pp. 284-307, 1991.
[Rama 89] P. J. G. Ramadge and W. M. Wonham, The control of discrete event systems, in
Proceedings of the IEEE, Vo. 77, No. 1 (Jan. 1989).
[Yevt 01a] N.Yevtushenko, T.Villa, R.Brayon, A.Petrenko, A.Sangiovanni-Vincentelli. Synthesis by
language equation solving (exended abstract), in Proc.of Annual Intern.workshop on Logic Synthesis,
2000, 11-14; complete paper to be published in ICCAD’2001; see also Solving Equations in Logic
Synthesis, Technical Report, Tomsk State University, Томск, 1999, 27 p. (in Russian).
[Zafi 80] P. Zafiropulo, C. H. West, H. Rudin and D. D. Cowan, Towards analyzing and synthesizing
protocols, IEEE Tr. Comm. COM-28, 4 (April 1980), pp. 651-660.

